

Емблема
кафедри
(за наявності)

Department of Computing
Technics

SYSTEM PROGRAMMING
Syllabus

Requisites of the Course

Cycle of Higher Education First cycle of higher education (Bachelor’s degree)

Field of Study 12 Information Technologies

Speciality 123 Computer Engineering

Education Program Computer Systems and Networks

Type of Course Normative

Mode of Studies full-time

Year of studies, semester 2 year (4 semester)

ECTS workload
5 credit (ECTS). Time allotment - 150 hours, including 54 hours of classroom work,
and 96 hours of self-study.

Testing and assessment 4 semester – Exam,

Course Schedule 3 classes per week by the timetable http://rozklad.kpi.ua/

Language of Instruction English

Course Instructors PhD, Associate Professor, Valerii Pavlov, pavlovvg@ukr.net

Access to the course

Outline of the Course

1. Course description, goals, objectives, and learning outcomes

The academic discipline "System Programming" belongs to the mandatory (regulatory)

educational components of the education program, namely to the professional training cycle. It has the

code PM 7 in the list of components of the educational program.

Reason and motivations for studying: the need to understand the principles of programmatic

control of the Central Processor Unit (CPU) directly. This discipline will give knowledge of how the

interaction of Hardware and Software components is carried out in the Computer System. That is, it

combines into a single complex knowledge of the architecture of computer systems and their

programming.

The goal of the "System Programming" course is: train the basic architecture and programming

environment of Intel 64 and IA-32 processors, the data-structure formats for hexadecimal and binary

numbers of integer and floating-point values, the instruction set of the processor and the opcode

structure, fundamental of low-level programming on Assembler language.

The purpose of the discipline is the formation of a number of competencies among students,

namely:

ABILITY:

• to understand the principles of processor control at the software level;

• to understand the sequence of actions during the development of a program in machine

language;

• to analyze the structure of the program in machine language;

• to develop the programs on Assembler language;

• to analyze the processes that are carried out during the compilation and linking of programs;

http://rozklad.kpi.ua/

• to use macro-assemblers opportunities in programming;

• to analyze the use of computer system resources by programs, in particular memory;

• also competencies PC 16, PC 17 from the MATRIX 5 of EDUCATIONAL PROFESSIONAL

PROGRAM.

After mastering the academic discipline, students must demonstrate such learning outcomes:

KNOWLEDGE:

• structures and components of System Software;

• machine language command structures and formats;

• basic storage formats of data according to IEEE 754 -2008;

• x86-64 processor modes;

• Assembler program structures;

• Assembler compiler directives;

• interaction of system programs during their execution;

SKILL:

• to determine the sequence of actions for the development of a system program on Assembler

language;

• to use integrated development environments (IDE) of system software;

• to analyze messages to the compiler during debugging programs;

• to analyze a program listing in machine language;

• to check the operability of the developed program by using correct control examples;

• to search and correct syntax and logical errors in the system program;

2. Prerequisites and post-requisites of the course (the place of the course in the scheme of
studies in accordance with curriculum)

Interdisciplinary Connections: To successfully study the «System Programming» course, students

must master the material and have certain knowledge, skills and abilities in such disciplines: «History of

Science and Technique», «Computer Discrete Mathematics», «Computer Systems and Networks

Fundamentals», «Programming Fundamentals», «Object-Oriented Programming», also have a basic

level of English proficiency not lower than A2.

Knowledge and skills acquired during the study of the discipline «System Programming» can be

used in the future when mastering the following courses: «Software Engineering Components»,

«Operating Systems», «Safety of Software», as well as during course and diploma design.

3. Content of the course

Section 1. Basic concepts of the Assembler language.

Topic 1.1. The processor as a programming object.

• The place of the Assembler language in the classification of programming languages.

• The structure of the processor according to the von Neumann concept.

• Chronology processor architectures of INTEL and AMD.

• Principles of organization and modes of use of computer memory.

• x86-64 microprocessor register memory organization.

Topic 1.2. IEEE 754-2008 Standard for number representation.

• Unsigned integers.

• Signed integers.

• Floating-point numbers.

• Binary-decimal number format BCD.

Topic 1.3. Processor x86 instruction formats.

• General command structure in machine language.

• The concept of operation code.

• The concept of a command prefix.

• Varieties of addressing in commands.

• Dependence of the command format on the type of addressing.

• Mod/RM field.

• SIB field.

• Assembler command recording formats.

• Assembler command code invariance.

Section 2. Assembler programming.

Topic 2.1. Developing programs in the Assembler language.

• Stages of program development.

• Compiler operation modes.

• Linker operation modes.

• Using debuggers and disassemblers.

• Assembler program structure.

• Compiler Directives.

• Flags register and main flags.

Topic 2.2. Using macro-assemblers.

• Macros and macro declaration.

• Macro variables and macro calculations.

Topic 2.3. Using Procedures and Subroutines.

• Stack Memory Principles.

• Internal and external procedures.

• Ways to pass parameters to procedures and return them from a procedure.

• Recursive procedure call.

• Developing Dynamic Link Libraries.

4. Bibliography

4.1 Basic:

1. Kip R. Irvine. Assembly Language for x86 Processors. – Florida International University: Pearson,

Seventh Edition 2014, - 876 p.

2. Randall Hyde. The art of Assembly Language. – San Francisco: No starch press, 2nd Edition 2010, - 764 p.

3. Barry Kauler. Windows Assembly Language & Systems Programming. – Lawrence: R&D Books, 2nd

Edition 1997, - 421 p.

4. Richard C. Detmer. Assembler. Introduction to 80x86 Assembly Language and Computer Architecture –

Mississauga, : Jones and Bartlett Publishers, 2001, - 419 p.

5. Paul A. Carter. PC Assembly Language – 2004, - 195 p.

4.2. Supplementary:

1. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual. Volumes 1–3

[Electronic resource]: ̶ 2014. http://www.intel.com/content/www/us/en/processors/architectures-

software-developer-manuals.html.

2. Microsoft Portable Executable and Common Object File Format Specification. [Electronic resource]: ̶

http://www.osdever.net/documents/PECOFF.pdf.

3. Jeff Duntemann. Assembly Language Step-by-Step. – Indianapolis: Wiley, 3rd Edition 2009, - 646 p.

4. Charles W. Kann. Introduction to MIPS Assembly Language Programming. – Gettysburg College, 2015,

- 179 p.

5. Dennis Yurichev. Reverse Engineering for Beginners. dennis@yurichev.com:, 2013, - 1083 p.

Educational content

5. Methodology

Section and topic titles

Number of hours

Total

including

Lectures
Practical

(Seminars)

Laboratory
(Computer
Workshop)

Self-
study

Section 1. Basic concepts of the Assembler language

Topic 1.1. The processor as a
programming object.

8 4 ̶ ̶ 4

Topic 1.2. IEEE 754-2008 Standard for
number representation.

14 4 ̶ 2 8

Topic 1.3. Processor x86 instruction

formats.
38 10 ̶ 6 22

Test 1 3 ̶ ̶ ̶ 3
Amount by section 1 63 18 ̶ 8 37

Розділ 2 Assembler programming
Topic 2.1. Developing programs in the

Assembler language.
18 6 ̶ 2 10

Topic 2.2. Using macro-assemblers. 18 6 ̶ 2 10

Topic 2.3. Using Procedures and

Subroutines.
30 6 ̶ 6 18

Test 2 3 ̶ ̶ 3
Amount by section 2 69 18 ̶ 10 41

Exam Preparation 18 ̶ ̶ ̶ 18
Total hours 150 36 ̶ 18 96

Labs

The main tasks of the Labs cycle are the receipt by students of the necessary practical skills in the
development of separate modules for controlling computing processes, ensuring the performance of
special functions on Assembler and low-level programming.

N

in/o
Name of laboratory work (computer workshop)

Number of

classroom hours

1 Internal representation of Integers and Floating-point numbers in the ix86

processor.
2

2 Investigation of the structure of COM files. 2

3 investigation of the structure of EXE files 2

4 Using Macros in a MASM32 Environment 2

5 Arithmetic and Logical with Integers. 2

6 Using Coprocessor Commands. 2

7 Modular programming. Using procedures. 2

8 Developing and Using Dynamic Libraries. 4

 Total: 18

6. Self-study

N

in/o
Names of topics and questions that are submitted for independent study

Number of

hours of

self-study

1
Performance of tasks on the topic of each Lecture session (see chapter 5) – 1

hour for 1 hour of lecture
36

2
Preparation for Laboratory Classes (see chapter 5) – 2 hours for 1 hour of

Laboratory Work
36

3 Preparation for Tests (see chapter 6) – 3 hours for each control 6

4 Exam Preparation 18

 Total: 96

Policy and Assessment

7. Course policy

When counting and evaluating laboratory work, the following factors are taken into account:

• Completeness of the task on laboratory work on the individual variant;

• Timeliness of laboratory work according to the schedule;

• Autonomy of laboratory work and no indications of plagiarism;

• Answers to questions on the content of laboratory work during its protection.

When evaluating control works, next consideration is taken into account:

• Correctness and completeness of tasks;

• Number of completed tasks in conditions of limited time;

• Autonomy of tasks and no indications of plagiarism;

• Number of attempts to run controls that precede the one that is estimated.

To prepare for the tests students receive a list of theoretical questions and the content of typical

exercises that will be in the tasks on the test.

At the first and second attestation, the number of laboratory works and tests that were passed at

the time of the attestation is taken into account.

8. Monitoring and grading policy

The system of assessing the grading policy in the discipline "System Programming" is based on the

"Regulations on the system of assessment of learning outcomes in the «Igor Sikorsky Kyiv Polytechnic

Institute» (https://document.kpi.ua/files/2020_1-273.pdf), namely the Rating System of Assessment

(RSA) of the second type (RSA-2).

RSA-2 consists of two components:

• starting (RS);

• examination (RE).

https://document.kpi.ua/files/2020_1-273.pdf

Starting points are formed as the sum of points that are obtained as a result of current control

activities (laboratory works (RL) and tests (RT)), incentive (RI) and penalty (RP) points:

RS = RL + RT + RI + RP,

where RL for 8 laboratory works is 8 Х 5 = 40 points,

 RT for 2 tests is 2 Х 15 = 30 points.

Thus, the maximum amount of base sum of starting points is 40 + 30 = 70 points

Behind the main assessment scale there are incentive and penalty points, which are taken into

account in the total amount of points, but are not included in the main RSA scale.

Incentive points take into account the answers to questions and the performance of tasks in lecture

classes, the quality of the notes.

Penalty points are provided for late performance of laboratory work, that is, with a delay relative

to the schedule.

Thus exam scores are a maximum of 30 points, but for admission to the exam, the student must

have at least 60% of the maximum sum of starting points, which is

70 х 0.6 = 42 points.

After passing the exam, the starting points RS are summed up with exam points RE. Assessment of

learning outcomes is carried out on a 100-point scale with further conversion of grades into a university

scale in accordance with the table:

Score Grade

100-95 Excellent

94-85 Very good

84-75 Good

74-65 Satisfactory

64-60 Sufficient

Below 60 Fail

Course requirements are not met Not Graded

Syllabus of the course

Is designed by teacher PhD, Associate Professor, Valerii Pavlov

Adopted by Department of Computing Technics (protocol #9 , May 10, 2021)

Approved by the Faculty Board of Methodology (protocol #10 , June 14, 2021)

